110 research outputs found

    Comment on "Ruling out chaos in compact binary systems"

    Get PDF
    In a recent Letter, Schnittman and Rasio argue that they have ruled out chaos in compact binary systems since they find no positive Lyapunov exponents. In stark constrast, we find that the chaos discovered in the original paper under discussion, J.Levin, PRL, 84 3515 (2000), is confirmed by the presence of positive Lyapunov exponents.Comment: 1 page. Published Versio

    Chaos and order in a finite universe

    Get PDF
    All inhabitants of this universe, from galaxies to people, are finite. Yet the universe itself is often assumed to be infinite. If instead the universe is topologically finite, then light and matter can take chaotic paths around the compact geometry. Chaos may lead to ordered features in the distribution of matter throughout space.Comment: 3 pages, contribution to the conference proceedings for ``The Chaotic Universe'', ICRA, Rom

    Big Black Hole, Little Neutron Star: Magnetic Dipole Fields in the Rindler Spacetime

    Get PDF
    As a black hole and neutron star approach during inspiral, the field lines of a magnetized neutron star eventually thread the black hole event horizon and a short-lived electromagnetic circuit is established. The black hole acts as a battery that provides power to the circuit, thereby lighting up the pair just before merger. Although originally suggested as a promising electromagnetic counterpart to gravitational-wave detection, the luminous signals are promising more generally as potentially detectable phenomena, such as short gamma-ray bursts. To aid in the theoretical understanding, we present analytic solutions for the electromagnetic fields of a magnetic dipole in the presence of an event horizon. In the limit that the neutron star is very close to a Schwarzschild horizon, the Rindler limit, we can solve Maxwell's equations exactly for a magnetic dipole on an arbitrary worldline. We present these solutions here and investigate a proxy for a small segment of the neutron star orbit around a big black hole. We find that the voltage the black hole battery can provide is in the range ~10^16 statvolts with a projected luminosity of 10^42 ergs/s for an M=10M_sun black hole, a neutron star with a B-field of 10^12 G, and an orbital velocity ~0.5c at a distance of 3M from the horizon. Larger black holes provide less power for binary separations at a fixed number of gravitational radii. The black hole/neutron star system therefore has a significant power supply to light up various elements in the circuit possibly powering jets, beamed radiation, or even a hot spot on the neutron star crust.Comment: Published in Physical Review D: http://link.aps.org/doi/10.1103/PhysRevD.88.06405
    corecore